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Abstract A detailed experimental investigation of the linear and non-linw AC susceptibilities of 
two ferromagnetic samples, namely PdMn with 0.75 at.% Mn and PdFe with 0.17 at.% Fe, has 
been carried out as a function oftemperature, frequency and amplifude of the AC driving field. In 
order to explain this behaviour, we have also developed a very simple meory for ferromagnetics. 
based upon the mean-field model. For these samples the expected divergence of the higher-order 
susceptibility xnl at T, d o s  not occu; instad the mewxed response tends to zero. According 
to this theory, the correction term for demagnetization effects seems to outweigh the uitical 
divergence in %.I at T + Tc. The exeeme sensitivity of Xnl to dem&metization Correction is 
not generally recognized in the rrcent literature. To obtain the transition temperatures and the 
critical exponent y of the samples, the well known Kouvel-Fisher method is used. We have 
found T, = 1.95 + 0.02 K for PdFe and T, = 2.65 & 0.02 K for PdMn. For PdMn and PdFe, 
the values of y are calculated to be 1.41 i 0.05 and 1.55 i 0.05, respectively. 

1. Introduction 

In the last decade, non-linea AC susceptibility measurements have been performed on 
various kinds of magnetic systems to elucidate whether the peculiar characteristics of 
these systems testify to an equilibrium phase transition. The non-linear part (2")) of the 
susceptibility has played a decisive role to determine the natllre of the phase transition at 
the critical temperature T,. Experimental evidence for a phase transition is based on the 
observation of a divergence of %,,I, at Tc. 

For this purpose, we have carried out a series of linear and non-linear AC susceptibility 
measurements on spin-glass, ferro- and antiferromagnetic samples. The results related to 
the spin-glass samples and the antiferromagnets have already been published [1-4]. In this 
paper, we wish to exhibit the results related to some ferromagnetic samples, namely PdMn 
with 0.75 at.% Mn and PdFe with 0.17 at.% Fe; 

The general magnetic properties of PdMn alloys are presented, in detail, in our previous 
paper [I]. Now, we briefly mention the magnetic properties of PdFe alloys. 

Two striking features have been experimentally observed for these alloys: ferromag- 
netism exists down to 0.01 at.% Fe [5,6]; and the magnitude of the magnetic moment 
associated with the Fe atom is very large, about lop8 per Fe atom. However, the magni- 
tude of the moment decreases with increasing concentration. The observed 1 0 p ~  is much 
larger than the maximum moment (= 2 . 2 ~ ~ )  per Fe atom according to the Pauli prin- 
ciple. Obviously, part of the observed moment must be due to polarization of the host 
metal, namely of Pd. Two important facts have become evident from measurements of the 
Mossbauer effect: first, the giant moment exists not only in the ferromagnetic state but also 
in the paramagnetic one down to a fairly small amount of Fe, about 30 ppm; secondly, 
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a spontaneous magnetization exists in the absence of an extemal magnetic field. For an 
extensive review, readers are referred to 171 and the references therein. 

We present the experimental procedure in section 2, the results and discussion in 
section 3, and finally our conclusions in section 4. 

B Ozcelik and K Kiymaf 

2. Experimental procedure 

2.1. Theoretical model 

According to the mean-field theory of Weiss [XI, the magnetization M(h,  T )  is given by 

M ( h ,  T )  = M0B.(gflBSHeff/kT) ( 1 )  

where MO = NgpBs  and B, is the Brillouin function, in which H" = h + A'M(H,  T )  
with h the applied field and A' a coupling factor between one spin and its surroundings. We 
introduce the reduced magnetization m defined as 

(2) 

When one absorbs the factor gflLgS/kT into the definition of the Brillouin function and take 
A = MOA', then 

m = m(h, T )  = M(h,  T)/Mo.  

m = B(heff) = B(h +Am). (3) 

Note that the temperature dependence of m is now contained in the coefficients b l ,  bz, . . . 
of the expansion 

(4) m = bl he' + b3(hC')' + . . . 

m = bl(h + Am) f b3(h + Am)3 + . . . 
01 

(5) 

01 

m(1 - Abl) = blh +b3(h+Am)3 +.. , . (6) 

It is obvious that according to (6) m will diverge at a temperature given by hbl = 1.  On 
the other hand, for Ab1 # 1 and h = 0, m should be zero. But m can have a value different 
from zero, namely spontaneous magnetization can exist. As bl c( 1 /T ,  the relation hbl = 1 
gives the critical temperature Tc = B of the CurieWeiss law. For T = Tc, the spontaneous 
magnetization is zero; for T < Tc, m is determined by the expression for h = 0; 

b, + b3(hm)'+. . . = I jh .  (7) 

Now, let us derive the critical exponents ,L3 and S from the relations derived above. 
Rewriting (5) for T = T, and letting bl = b;, b3 = b;, . . . with A = l/bF one finds 

m = b;(h + Am) + b;(h + Am)' + b;(h + Am)' + . . . 
m = brh + m + bi(h + m/bD3 + bg(h -+ m/bD5 + . . . 
0 = b;h + b;(h + m/bD3 + bg(h + mjb;)' + . . . 
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01 

(h + m/bF) = i-(l/b:)(bih + bg(h + m/bD5 + . . - ] ' I 3 .  (8) 

At T = Tc the magnetization can be defined as 

m cx hila (9) 

where 8 > 1 [91. On the other hand in the limit h + 0 and T = T, equation (8) can be 
written as 

(10) 

Comparing (9) and (10) one finds 8 = 3. One can also see from (IO) that b3 has a 

For h = 0 and T c T, to determine the exponent fl  in the critical expression, 

c 413 -bc)-l/3hll3 m = ( 4 )  ( 

negative value. 

m c( ( - E ) B  = [ ( T ~  - T ) / T J ~  (1 1) 

we first write 

Now (6) is written with 1 - hbf = 0 as 

(1 - Abl) - (1 -Ab;) = b3A3mz + . . . 
b;-b l=b3hm 2 2  +... 

or 

m = (-bl/b3)'/zb;(-6)1/z. (14) 

By comparing (11) and (14) one finds p = 112. The prefactor (-b1/b3)'/2bt is a function 
of T ,  but is almost constant in the E region where the result given above is valid. 

With the equality y = f l ( S  - 1) [9], one finds y = 1, which can easily be verified from 
the Curie-Weiss law. 

As the last extension of this theory, we propose more general expressions for f and its 
derivatives, namely the linear and non-linear susceptibilities of the free spins, as given by, 
for instance, the Langevin or Bnllouin function. 

We will use the notation d"m for d"m/dh" and B', B", . . . for the derivatives of B with 
respect to the argument (h + Am). The first derivative of (3) is 

dm = B'( 1 + A dm) 

or 

dm = B'/( 1 - h B') 
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The relation is valid for all values of A. For h --f 0 and T > c, one can obtain the well 
known Curie-Weiss law. Since B’ = bl and bl c( 1/T, (15) is written as 

B &&ik and K KiymaG 

dm = bl/(l -Abl). (16) 

Note that 

1 +Adm = l/(l -AB’). (17) 

The second derivative of (3) is 

d’m = B”(1f A dm)’ -k B‘A d’m. (18) 

Using (17) one can decompose (18) as 

d’m = [B”/(l - hB‘)](l+ Adm)’ = B”/(1 -AB’)’. (1% 

This equation is zero at temperatures above T, for h = 0, since B” = 0. By virtue of the 
intemal field Am, B” # 0 below T, even for h = 0. This means that one should be able to 
measure a second harmonic response, which is sharply peaked just below T,, irrespective 
of hysteresis and domain-wall movements. Furthermore, it is to be expected that, owing 
to the critical fluctuations, there will be some second harmonic response too just above T,. 
But these will be suppressed by critical slowing down and demagnetizing effects. 

The third derivative of (3) is 

d3m = B”(1 fXdm)’+3B”(l +hdm)Ad’m f B‘Ad’m (20) 

or 

d3m= [B”’/(l -AB’)](l+Adm)3+3B“[Ad2m/(l-AhB’)](1+Adm). 

Using (17) in the last expression we find 

d3m = B”’/(l - AB’)4+3A(B”)2/(1 - AB’)5. (21) 

Since B” = 0, for h = 0 and T > T,, this equation reduces to 

d3m = B‘”/(1 - (22) 

Inserting B‘ = bl, B”’ = 6b3 in (22) one can find 

d3m = 6b3/(1 - Ab1)4 = 6[b3/(b1)~](dm)~. (23) 

In AC measurements of 23, the second term in (21) again should lead to some short- 
range ordering contribution at temperatures below Tc. For T < T, it is not clear at all what 
is to be expected, as there are at least three conhibutions involved two in the expression 
for d3m and one caused by hysteresis effects. Another complicating effect is the enormous 
influence on the measurements of non-linear susceptibilities by the demagnetizing effect. 
We have already emphasized the importance of this effect in our previous paper 121 where 
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the relation between the measured and corrected values of the third harmonic component 
of the non-linear susceptibility is given by 

~~. . 

2 3 c  =&/(I  - 021)~ (24) 

(where D is the demagnetizing factor) or using the compact notation one obtains 

d3m d’m jdh: -=  
dh’ (1 - D dn~ ldh , )~  

where i and e subscripts are used to indicate internal and external fields, respectively. Since 
the corrected linear susceptibility is 

dm dmldhe - =  
dhi (1 - D dmldh,) 

using (26) in (25) one can obtain 

-= d’m d3m/dh: (e)4 
dh? (dm/dh,)4 dhj 

or reorganizing (27) we obtain 

4 

It is experimentally well known that dmldh stays finite but theoretically diverges with 
the -y exponent. On the other hand, according to the scaling theory, d’mldh? diverges with 
the critical exponent - (3y + Zg). Thus the measured third harmonic will be proportional 
to 

d’mldh; = ~ ~ - ~ o ( d m / d h , ) ~ .  (2% 

For the mean-field theory y = 2s and consequently the measured third harmonic will 
have a finite value. When y > Zg, as is generally the case, the measured thii harmonic 
will be zero at T = T, and consequently will pass through a minimum for some T Z‘,. 
This will make the actual measurements of the scaling exponents in ferromagnets rather 
difficult. 

To check the above theoretical ideas the linear and non-hear A c  susceptibilities of two 
different ferromagnetic alloys having different impurities, namely PdFe (0.17 at.% Fe) and 
PdMn (0.75 at.% Mn), have been measured. The results are presented in section 3. 

2.2. Experimental method 

The details of the experimental technique and procedure have already been given in our 
previous publications [1,2]. Both samples used were almost spherical in shape and their 
weights were 0.1083 g for PdFe and 0.2650 g for PdMn. The temperature and frequency 
ranges of our measurements are 1.2-4.2 K and 15-234 Hz, respectively. The AC field 
amplitude used is 70 mOe. However, in order to investigate the AC field amplitude 
dependence of the third harmonic, amplitudes of 0.15, 1.00 and 7.00 Oe were also used. 
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3. Results and discussion 

In order to perform an experiment on a ferromagnetic sample, one has to be careful 
about some points: There are two saturation effects that play an important role in the 
time-dependent behaviour of magnetization M ( t )  in response to a time-dependent field 
H(t) = hcos(wr). These saturation effects are the amplitude of the AC field and the 
measuring frequency. In the analysis, the third harmonic response is found to be prOpOrtiOhal 
to h3 [ I ,  21. When h is chosen too large, there is a probability that, in the neighbourhood of 
T,, M will reach the saturation value MO. In extremum, MO) will then be a square wave. 
Owing to the magnetization effect, the rise-time of the square wave will be bounded by the 
finite value of the susceptibility, X = 1/D, giving rise to a trapezoidal or even triangular 
waveform of M(r)  as a function of time. In any case there will also be a strong fteqUehCy 
dependence. If one uses higher frequency values, one is faced with the ‘eddy-current’ effect 
as well as the frequency-dependent saturation in magnetization. As a result the values of h 
and f should be low enough not to affect the susceptibility results. Therefore, we confine 
ourselves to use a fairly small value of h, like 70 mOe, and f below 234 Hz during the 
experimental process. We should further emphasize that all our susceptibility (lineat and 
non-linear) results are normalized to 1 Oe. 

3.1. PdFe (0.17 a t %  Fe) alloy 

The temperature dependences o i  the in- and out-of-phase components of the linear 
susceptibility, for different frequencies, are presented in figures 1 and 2, respectively. As 
can be seen from figure 1 the in-phase component 2; first increases with decreasing T, and 
then levels off, leading to saturation at the lowest temperatures. Furthermore, around and 
below the transition temperature, which will be obtained later on, the response becomes 
frequency-dependent, increasing with decreasing frequency, and this dependence disappears 
at the lowest frequencies and reaches its maximum value. The mentioned levelling off is 
due to the demagnetization effect, which is a general feature of a non-uniform ferromagnet 
171. 

Comparing figures 1 and 2 one immediately sees that the out-of-phase component 2; 
shown in figure 2 decreases with decreasing frequency, in contrast to the behaviour of f ;  
shown in figure 1. Furthermore, especially at higher frequencies, a maximum appears in 
at temperatures where the levelling-off starts for the corresponding in-phase component in 
figure 1. These maxima seem to shift to higher temperatures with increasing frequency. The 
reason for these maxima and their behaviour might be related to the demagnetization effect 
as well as to incomplete growth of the domains that start to form around the ferromagnetic 
phase transition temperature of the sample. The growth of the domains means domain-wall 
movement, which gives rise to energy output, causing an anomaly in the absorption term 
of the susceptibility. 

Here we should mention that the zero-frequency value indicated in figure 1 is obtained 
by plotting t; (q is not used since it is negligible at the lowest frequency) against the 
measuring frequencies as a parameter of temperature. The extrapolation of these curves 
give the zero-frequency values of $, 20. The saturation value of this, obviously, gives the 
inverse of the demagnetizing factor D .  In this way D is found to be 54. 

Using the value of D in (26) we obtained the corrected values of 20, namely 8. Near 
T (transition temperature) 8 varies as €91 
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n f = o  H~ 
0 f = 15 Hr 
A f =30 HZ 
f f =60 Hz 
X f - 1 1 7  Hz 
0 f :: 23L Hz 

. ,  

1.5 2.0 2.5 3.0 3.5 4.0 L.5 

T L K I  

Figure 1. In-phase component of the linear susceptibility of PdFe (with 0.17 at.% Fe) alloy for 
several frequencies as a function of temperature. 

L ,  I 

U f ~ 1 5  Hr 
0 f = 3 0  Hz 
A f =  60 Hz 

3 + f -117 , Hz 
0 X f = 2 3 L  ' Hz 
'D 
r7 

x 

0 2  
';. 
i 

1x 1 

Y 
: 

0 
I .o 1.5 2.0 2.5 3.0 3.5 L.0 , 

T I K I  
Figure 2. Out-of-phase component of the linear susceptibility of PdFe (with 0.17 at.% Fe) alloy 
for several frequencies as a function of temperature, 

where A is a constant. By using this relation and applying the well known Kouvel-Fisher 
method [9] ,  one can determine Tc, and the critical exponent y .  
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For this, one plots 

against T, obtaining a straight line. The slope of this line gives y ,  and it intersects the 
T axis at Tc. In order to obtain dG/dT  and the best straight line, we used a three-point 
numerical differentiation program and linear regression method, respectively. Our data give 
y = 1.55 & 0.05 and Tc = 1.95 i 0.02 K. 

Another method to obtain T, is to extrapolate the slope of 20 at the point where its 
second derivative with respect to T is zero. The intersection point of this extrapolation with 
the saturation (constant) value of go gives T,. By using this method we obtained almost 
the same Tc value as above. 

Figures 3 and 4 illustrate the temperature dependence of the in- and out-of-phase 
components of the third harmonic response, respectively. Both figures indicate that, just 
above Tc, the third harmonic of the non-linear susceptibility increases rapidly in a narrow 
temperature range, passes through a maximum and then tends to zero at Tc, in agreement 
with the theory (see section 2). However below Tc, owing to the dynamical effects, such 
as hysteresis, relaxation phenomena and remanence, an expected non-linearity is observed. 

T C K I  
Figure 3. In-phase component of the third harmonic of the non-linear susceptibility of PdFe 
(with 0.17 at.% Fe) alloy for f = 234 Hz as a function of temperature. 

3.2. PdMn (0.75 at.% Mn) alloy 

In the previous subsection linear and non-linear susceptibility results of a non-uniform 
ferromagnet have been given and compared with the theory in section 2. Now, we wish 
to present the results for a 'uniform' ferromagnet, namely PdMn (0.75 at.% Mn). The 
in- and out-of-phase components of the linear susceptibility appear in figures 5 and 6, 
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, 

Figure 4. Out-of-phase component of the third h m o n i c  of the non-linear susceptibility of 
PdFe (with 0.17 a.% Fe) alloy for 3 ,f = 234 Hz as B function of tempen-. 

respectively. As can be seen explicitly from figure 5, the PdMn sample is a very good 
uniform ferromagnet, since there is a very sharp transition from para- to ferromagnetic 
phase, not like for the case of PdFe sample discussed in the previous section (compare 
figures 1 and 5). By looking at figures 2 and 6. one can immediately see that the tiny 
peaks appearing in figure 2 become well defined and sharp in figure 6, but the behaviour 
is again the same, i.e. the magnitudes of the peaks increase,  and^ their positions shift to 
higher temperatures with increasing frequency. However, the dynamical effects below T, 
mentioned for the case of PdFe are not so obvious for the PdMn system. 

The zero-frequency value of the linear susceptibility has been found in a similar way 
as the case of PdFe (see section 3.1), but the result turned out to be almost the same as 
that of the 15 Hz value. Therefore, for the sake of clarity, the zero-frequency value of $ 
is not shown in figure 5. From the 15 Hz figure the demagnetization factor D is found to 
be D = 48.9. 

The ferromagnetic transition temperature Tc and the critical exponent y have been 
calculated in a similar way as for the case of PdFe given in the previous subsection. Our 
results for T, and y are 2.65 iO.02 K and 1.41 zk0.05, respectively. Note that the y value 
for PdMn is in good agreement with the values predicted in the literature (i.e. y = 1.3-1.5), 
and observed for other ferromagnetic systems 19, IO]. 

The results for in- and out-of-phase components of the third harmonic 2 3  are presented 
in figures 7 and 8. The in-phase component f3 shown in figure 7 demonstrates that, just 
above Tc, a small peak is formed and, at T,, 33 goes almost to zero. This means that, as the 
theory in section 2 demonstrates, while approaching Tc from above, f3 should diverge, but 
due to the demagnetizing effect at Tc this divergence is suppressed forming the mentioned 
peak. The behaviour of 8; below Tc is believed to be due to the dynamical effects. The out- 
of-phase component $ of PdMn is somewhat different from that of PdFe: $ approaches 
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0 f : 15 Hz 
0 f = 3 0  Hz 
A f i 23L HZ 

1.0 1.5 2.0 2.5 3.0 3.5 L.0 L.5 

T [K 1 
Figure 5. In-phase component of the linear susceptibility of PdMn (with 0.75 at.% Mn) alloy 
for several frequencies a5 B function of temperature. 
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a f =  15 H~ 
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1.0 
U 

I X  
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0 
1.0 1.5 2 .o 2 5 3.0 3.5 L.0 1.5 

TCKI 
Figure 6. Out-of-phase component of the linear susceptibility of PdMn (with 0.75 at.% Mn) 
alloy for seveml frequencies m a function of temperature. 

zero at I", but then goes to negative values and forms a minimum below TC. We attribute 
this behaviour also to the dynamical effects. 
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-0.5 I I 
1.0 1.5 2.0 2.5 3;O 3.5 L.0 1 . 5  

T C K l  
Figure 7. In-phase component of the third harmonic of the non-linear susceptibility of PdMn 
(with 0.75 at.% Mn) alloy for 3 j = 234 Hz as a function of temperarure. 

Figure 8. Out-of-phase component of the Kid harmonic of the non-line= susceptibility of 
PdMn (with 0.75 at.% Mn) alloy for 3 f = 234 Hz as a function of temperature. 

For the PdMn sample we also investigated the AC field amplitude dependence of the 
third harmonic. For this we used four different amplitudes (0.07, 0.15, 1.00 and 7.00 Oe). 
We have found that at 1.00 Oe and above the dynamical effects below T, are completely 
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suppressed, and hence almost no responses for $ and a are observed. 

B OzFelik and K K i y m F  

4. Conclusions 

The linear susceptibility measurements on ferromagnetic PdFn and PdMn alloys 
demonstrate that the former sample is a non-uniform ferromagnet while the latter is a 
uniform ferromagnet. These observations are in good agreement with the literature [7]. The 
in-phase and out-of-phase components of the linear susceptibility of ferromagnetic PdMn 
indicate that below T, the in-phase component is almost frequency-independent while the 
out-of-phase component is frequency-dependent. These observations point out that the 
measured relaxation time of this sample is almost zero. This can be proven by using the 
Debye relaxation function. In this conjecture, the measured 3 and can be approximated 
as 

= ( i /~)[ i / (~, , ,+ 1/or)2 + I] 
and 

2y N (l /D)[oqJ(orm + l/OS)* + 11 
where r,,, is the measured and r the intrinsic relaxation time. In general, for ferromagnets 
r + 00 as T --f z, and is temperature-dependent. Depending on r,,, there are three limits 
for f ;  and q: 

(i) r, + 00 

N ( l /D)( l /ozr i )  N (l/D)(l/WTm) 

(ii) rm + finite 

i{ N (l/D)[l/(l +w2ri)1 f i  N (l/D)[mr,,,/(l +w2ri)1 

(iii) r,,, + 0 

$ 2: 1/D e 2 (l /D)wt, .  

As discussed above, for the PdMn sample the third situation is valid. But for ferromagnetic 
PdFe the second situation seems to be valid, since the experimental data around and below 
Tc shown in figures 1 and 2 indicate the predicted frequency dependence in situation (ii). 

The other important conclusion we arrive at is that the third harmonic susceptibility 
results on these samples support our theoretical conjecture that the non-linear component 
of the susceptibility diverges while approaching Tc from above but somehow because of 
the demagnetizing effect at Tc it is suppressed and becomes almost zero. Hence a peak is 
formed just below T,. On the other hand, below Tc dynamical effects prevail. We can prove 
this by applying higher AC field amplitudes, since at high enough AC field amplitude these 
dynamical effects can be completely suppressed. For the PdMn sample this observation has 
been made (see section 3.2). 
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